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ABSTRACT: Irradiation of 2-alkoxy substituted ben-
zophenones 2a–f and ethyl 2-aroyl-4-methylphenyl-
oxyacetates 2g–i in benzene and in acetonitrile un-
derwent photocyclization to substituted dihydroben-
zofuranols 3a–i with 3a–c in very less yield being
racemate and 3d–i in good yield being mixture of
cis-trans isomers showing high stereoselectivity in
benzene and decreased stereoselectivity in acetoni-
trile. C© 2005 Wiley Periodicals, Inc. Heteroatom Chem
16:212–217, 2005; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/hc.20111

INTRODUCTION

Photocyclization reactions of o-alkoxy aromatic car-
bonyl compounds have been used for synthesis
of benzofuran derivatives [1–3]. Among the com-
pounds, benzophenones have been extensively stud-
ied from a viewpoint of reaction mechanisms and
synthetic applications [4–6]. Photocyclization reac-
tions of ortho alkoxy benzophenones and its deriva-
tives proceed via 1,5-biradical intermediates formed
through δ-hydrogen abstraction by the excited car-
bonyl group. The isomer ratios vary according to
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the solvents used in the reaction [7,8]. In the liter-
ature, there are few examples that discuss in detail
solvent and substituent effects on cyclization of 1,5-
biradicals [9,10]. In fact, Wagner et al. have studied
that photocyclization of 2-benzyloxybenzophenone
and 2-benzyloxy acetophenone derivatives in nonpo-
lar solvent like benzene, and revealed high stereose-
lectivity of cis isomer [5,6]. However, in the presence
of Lewis base solvents stereoselectivity decreased
markedly [4,6].

In this paper, we report the synthesis of sub-
stituted dihydrobenzofuranols (3a–c) (racemate,
R = H) and 3d–i (cis-trans isomers with regard to
R and OH), using photocyclization of 2-alkoxy sub-
stituted benzophenones (2a–f) and ethyl-2-benzoyl
phenyloxyacetates (2g–i, Scheme 1).

RESULTS AND DISCUSSION

Compounds 2a–i were synthesized by the benzoy-
lation of p-cresol with the corresponding acid chlo-
rides followed by Fries rearrangement and etherifi-
cation [11–13]. Their structural elucidation was con-
firmed by IR and 1H NMR data.

Photocyclization reactions of compounds 2a–i
were conducted with a 400 W high-pressure mercury
lamp (pyrex filter) in two solvents of different polar-
ity (benzene and acetonitrile) under nitrogen atmo-
sphere. From the results of irradiation of 2a–i, the
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SCHEME 1

TABLE 1 Time Required (h) and Yield (%) of All Compounds Prepared

Product 3a–i

Starting Material R R1 R 2 R 3 Solvent Irradiation Time (cis:trans) Yield

2a H H H CH3 C6H6 13 3a 30
CH3CN 14 32

2b H H H Br C6H6 18 3b 32
CH3CN 20 30

2c H Cl Cl H C6H6 19 3c 28
CH3CN 18 31

2d CH3 H H CH3 C6H6 4 3d (7.8:1) 88
CH3CN 4 (1.56:1) 82

2e CH3 H H Br C6H6 8 3e (5.6:1) 80
CH3CN 9 1.71:1 76

2f CH3 Cl Cl H C6H6 8 3f (8.5:1) 86
CH3CN 8 1.25:1 81

2g CO2Et H H CH3 C6H6 4 3g (14:1) 90
CH3CN 4 1.26:1 86

2h CO2Et H H Br C6H6 9 3h (16:1) 85
CH3CN 10 1.14:1 79

2i CO2Et Cl Cl H C6H6 9 3i (9.4:1) 83
CH3CN 10 1.5:1 80

possible reaction pathway of photocyclization is as
shown in Scheme 1 . During the process (n, π∗)
excited triplet state is produced after intersystem
crossing process (ISC) [4]. At this stage the carbonyl
group abstracts δ-hydrogen to give 1,5-biradicals
(2a–i)∗. When 2-methoxy substituted benzophe-
nones (R = H in Scheme 1) 2a–c were irradiated
in benzene as well as in acetonitrile solution, 3-aryl-
2,3-dihydro-3-benzofuranols 3a–c were obtained as
a racemic mixture in 28–32% yield (Scheme 1 and
Table 1).

Compounds 2a–c generated less stable primary
radical at the carbon atom adjacent to phenoxy
group as in (2a–c)∗. The products 3a–c were formed
only on long exposure of 2a–c to UV light (13–20 h).
After 10 h of exposure, only 15% of the product
formed (observed by TLC). Irradiation was contin-
ued up to 20 h and gave only 28–32% of 3a–c. In
contrast, 2d–i afforded the corresponding compara-
tively stable secondary radical as in (2d–i)∗ [14]. For-
mation of relatively stable secondary radical from
2d–i made intramolecular �-hydrogen abstraction
favorable compared with the �-hydrogen abstraction
forming primary radical which was proved by irra-
diation period of 2d–i (4–10 h), giving 76–90% of
cis-trans 3d–i. In addition to the stability of the radi-
cals, the presence of CH3 or bulkier group on alkoxy
radical favors the stereoselective formation of cis iso-
mer in benzene whereas in acetonitrile a mixture of
cis-trans isomers was obtained.

Irradiation of 2-ethoxy substituted benzophe-
nones 2d–f (R = CH3 in Scheme 1) and ethyl 2-
aroyl-4-methylphenyloxyacetates 2g–i (R = CO2Et
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in Scheme 1) in benzene solution under the same
conditions gave cis isomer of benzofuranols 3d–i as a
predominant product selectively. In the experiment a
small amount of trans-isomer 3d–i was also isolated.
The total yield was in the range 80–90%, and cis and
trans ratio was varied from 5.6:1 to 16:1. The selec-
tivity of cis product is attributed to little hydrogen
bonding between the hydroxyl group of 1,5-biradical
(2d–i)∗ and the nonpolar solvent benzene resulting in
thermodynamically more stable product and hence
cis ratio increases.

On the other hand, photo reactions of 2d–i in
acetonitrile solution furnished a mixture of cis and
trans benzofuranols 3d–i in 76–86% yield with cis-
trans ratio ranging from 1.14:1 to 1.71:1 showing
decrease in stereoselectivity. Since in polar solvent
acetonitrile, intermolecular hydrogen bonding is es-
tablished between hydroxyl group of 1,5-biradical
and solvent molecule, which restricts the free ro-
tation between hydroxyl group and o-alkoxy phenyl
ring, thereby decreasing the stereoselectivity. Stere-
ochemistry of cis and trans isomers of 3d–i was de-
termined by considering an anisotropic effect of C3-
phenyl group on C2-H in the 1H NMR spectra [5,9]. In
substituted dihydrobenzofuranols, C3-phenyl group
shields C2-H at the cis position, that is C2-H chem-
ical shift appears at a higher magnetic field than
that of trans position. In a typical example, for com-
pound 3d, signals for C2-H in cis isomer appeared at δ
3.9–4.2 and in trans isomer signals appeared at δ 4.3–
4.5. Small difference in steric bulkiness between the
substituted phenyl group and the hydrogen bonded
hydroxyl group would make both counterclockwise
and clockwise rotations possible resulting in de-
creased stereoselectivity in polar solvent acetonitrile.
The large difference in cis and trans ratios from reac-
tion in benzene and acetonitrile is attributed to the
solvent effect.

Intramolecular cyclization of (2a–i)∗ afforded
racemate-substituted dihydrobenzofuranols 3a–c
and cis-trans isomers of substituted dihydrobenzo-
furanols 3d–i. But the presence of methyl group
in 1,5-biradical (2d–f)∗, which is electron releasing,
stabilizes the 1,5-biradical intermediate and gives
good yield of substituted dihydrobenzofuranols in
a short time irradiation compare to irradiation pe-
riod of 2a–c. Irradiation period of 2a, 2d, and 2g
is less than that of 2b–c, 2e–f and 2h–i respec-
tively. This is due to the presence of CH3 group on
phenyl ring which is also electron releasing that fa-
vors the cyclization of 1,5-biradical. Under similar
conditions, electron withdrawing group bromo in
2b, 2e, 2h and also chloro group in 2c, 2f, 2i destabi-
lizes the 1,5-biradical there by decrease in the rate of
cyclization.

EXPERIMENTAL

The melting points are uncorrected. Column chro-
matography was performed on silica gel (60–120
mesh). Unless otherwise stated anhydrous sodium
sulfate was employed as a drying agent. Benzene for
photoreactions was dried by distilling over sodium
metal, and acetonitrile was dried by distilling over
phosphorus pentoxide then over potassium carbon-
ate. Photoreactions were carried out with 400 W
high pressure mercury lamp (Riko UVL-400HA) with
pyrex filter. The IR spectra in Nujol were deter-
mined on a Shimadzu 8300 FT-IR spectrophotome-
ter. 1H NMR and 13C NMR were recorded on 300
and 75 MHz respectively, in deuterated chloroform
(CDCl3) using tetramethylsilane (TMS) as an internal
standard.

The substituted benzophenone 1a–c was pre-
pared by Fries rearrangement according to the pro-
cedure described by Vogel [11] and Olah et al. [12].
These compounds have been thoroughly character-
ized by IR and 1H NMR spectral data and were puri-
fied by column chromatography prior to use.

General Procedure for 2a–i

A mixture of (2-hydroxy-5-methylphenyl)(aryl)-
methanone 1 (10 mmol), alkyl bromide/ethyl bromo
acetate (10 mmol), potassium carbonate (20 mmol),
and acetone (25 mL) was refluxed for 4 h [13].
After the removal of insoluble material by filtration,
water (25 mL) was added and extracted with ether
(3 × 30 mL). Ether layer was washed with 5%
sodium hydroxide (3 × 15 mL) and then with water
(2 × 15 mL). Ether layer was dried with anhydrous
sodium sulfate and evaporated. The residue was
chromatographed and eluted with benzene-afforded
product 2.

2a: Yield 83% (1.99 g), mp 160–62◦C; IR (Nu-
jol): 1658 cm−1 (C O); 1H NMR (CDCl3): δ 2.25 (s,
3H, Ar-CH3), 2.32 (s, 3H, Ar-CH3), 3.6 (s, 3H, OCH3),
6.7–7.7 (bm, 7H, Ar-H); 13C NMR (CDCl3): δ 20.9 (q),
56.0 (q), 113.7 (d), 123.3 (s), 128.9 (d), 129.9 (s), 130
(d), 131.8 (d), 133.9 (d), 134.8 (s), 141.4 (s), 160.6 (s)
187.0 (s). Anal. Calcd for C16H16O2(240):C, 80.0; H,
6.67%. Found: C, 80.12; H, 6.63%.

2b: Yield 75% (2.29 g), mp 55–58◦C; IR (Nujol):
1660 cm−1 (C O); 1H NMR (CDCl3): δ 2.23 (s, 3H, Ar-
CH3), 3.55 (s, 3H, OCH3), 6.65–7.5 (bm, 7H, Ar-H);
13C NMR (CDCl3): δ 20.9 (q), 56.0 (q), 113.7 (d), 123.3
(s), 126.8 (s), 129.7 (s), 131.5 (d), 131.8 (d), 132.3 (d),
133.9 (d), 136.8 (s), 160.6 (s), 187.0 (s). Anal. Calcd
for C15H13BrO2(305): C, 59.02; H, 4.26; Br, 26.23%.
Found: C, 58.95; H, 4.25; Br, 26.21%.

2c: Yield 71% (2.09 g), mp 150–52◦C; IR (Nujol):
1659 cm−1 (C O); 1H NMR (CDCl3): δ 2.22 (s, 3H,
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Ar-CH3), 3.5 (s, 3H, OCH3), 6.6–7.8 (bm, 6H, Ar-H);
13C NMR (CDCl3): δ 20.9 (q), 56.0 (q), 113.7 (d), 123.3
(s), 127.7 (d), 129.6 (d), 129.7 (s), 131.8 (d), 133.9
(s), 133.9 (d), 134.0 (d), 135.8 (s), 139.6 (s), 160.6
(s), 187.0 (s). Anal. Calcd for C15H12Cl2O2 (295): C,
61.02; H, 4.07; Cl, 24.07%. Found: C, 60.89; H, 4.02;
Cl, 24.05%.

2d: Yield 77% (1.96 g), liquid; IR (neat): 1650
cm−1 (C O); 1H NMR (CDCl3): δ 1.3 (t, J = 7 Hz,
3H, CH3), 2.2 (s, 3H, Ar-CH3), 2.4 (s, 3H, Ar-CH3),
4.1 (q, J = 7 Hz, 2H, OCH2), 6.7–7.7 (bm, 7H, Ar-H)
;13C NMR (CDCl3): δ 14.3 (q), 20.9 (q), 65.1 (t), 113.8
(d), 123.4 (s), 128.9 (d), 129.0 (s), 130.0 (d), 131.4
(d), 133.5 (d), 134.8 (s), 141.4 (s), 157.7 (s), 187.0 (s).
Anal. Calcd for C17H18O2(254): C, 80.31; H, 7.09%.
Found: C, 80.5; H, 7.1%.

2e: Yield 82% (2.62 g), pale yellow liquid; IR
(neat): 1660 cm−1(C O); 1H NMR (CDCl3): δ 1.3 (t,
J = 7 Hz, 3H, CH3), 2.23 (s, 3H, Ar-CH3), 4.1 (q,
J = 7 Hz, 2H, OCH2), 6.65–7.5 (bm, 7H, Ar-H);13C
NMR (CDCl3): δ 14.3 (q), 20.9 (q), 65.1 (t), 113.8 (d),
123.4 (s), 126.8 (s), 129.0 (s), 131.4 (d), 131.5 (d),
132.3 (d), 133.5 (d), 136.8 (s), 157.4 (s), 187.0 (s).
Anal. Calcd for C16H15BrO2(319): C, 60.19; H, 4.70;
Br, 24.6%. Found: C, 60.09; H, 4.65; Br, 24.4%.

2f: Yield 75% (2.42 g), pale yellow liquid; IR
(neat): 1659 cm−1(C O); 1H NMR (CDCl3): δ 1.3 (t,
J = 7 Hz, 3H, CH3), 2.22 (s, 3H, Ar-CH3), 4.1 (q,
J = 7 Hz, 2H, OCH2), 6.6–7.5 (bm, 6H, Ar-H); 13C
NMR (CDCl3): δ 14.3 (q), 20.9 (q), 61.1 (t), 113.8 (d),
123.4 (s), 127.7 (d), 129.0 (s), 129.6 (d), 131.4 (d),
133.5 (d) 133.9 (s), 134.0 (d), 135.8 (s), 139.6 (s),
157.4 (s), 187.0 (s). Anal. Calcd for C16H14Cl2O2(323):
C, 62.14; H, 4.53; Cl, 22.72%. Found: C, 62.11; H,
4.51; Cl, 22.68%.

2g: Yield 90% (2.81 g), liquid; IR(neat): 1760 (es-
ter, C O); 1664 cm−1(C O); 1H NMR (CDCl3): δ 1.2
(t, J = 7 Hz, 3H, ester CH3), 2.4 (s, 3H, Ar-CH3),
2.45 (s, 3H, Ar-CH3), 4.2 (q, J = 7 Hz, 2H, ester O-
CH2), 4.5 (s, 2H, OCH2), 6.5–7.8 (bm, 7H, Ar-H);
13C NMR (CDCl3): δ 13.6 (q), 20.9 (q), 20.9 (q), 59.5
(t), 75.6 (t), 113.7 (d), 123.0 (d), 128.9 (d), 129.9
(s), 130.6 (d), 131.8 (d), 133.9 (d), 134.8 (s), 141.4
(s), 160.6 (s) 171.0 (s), 187.0 (s). Anal. Calcd for
C19H20O4(312): C, 73.08; H, 6.41%. Found: C, 7310;
H, 6.38%.

2h: Yield 88% (3.32 g), brown liquid; IR (neat):
1763 (ester, C O); 1660 cm−1 (C O); 1H NMR
(CDCl3): δ 1.2 (t, J = 7 Hz, 3H, ester CH3), 2.3 (s,
3H, Ar-CH3), 4.2 (q, J = 7 Hz, 2H, ester O-CH2),
4.5 (s, 2H, OCH2), 6.5–7.8 (bm, 7H, Ar-H); 13C NMR
(CDCl3): δ 13.6 (q), 20.9 (q), 59.5 (t), 75.6 (t), 113.7
(d), 123.3 (s), 126.8 (s), 129.7 (s), 131.5 (d), 131.8
(d), 132.3 (d), 133.9 (d), 136.8 (s), 160.6 (s), 171.0
(s), 187.0 (s). Anal. Calcd for C18H17BrO4(377): C,

57.29; H, 4.51; Br, 21.22%. Found: C, 57.30; H, 4.50;
Br, 21.28%.

2i: yield 74% (2.71 g), liquid; IR (neat): 1762 (es-
ter, C O); 1661 cm−1 (C O); 1H NMR (CDCl3): δ 1.2
(t, J = 7 Hz, 3H, ester CH3), 2.2 (s, 3H, Ar-CH3), 4.15
(q, J = 7 Hz, 2H, ester O-CH2), 4.45 (s, 2H, OCH2),
6.65–7.7 (bm, 6H, Ar-H); 13C NMR (CDCl3): δ 13.6 (q),
20.9 (q), 59.5 (t), 75.6 (t), 113.7 (d), 123.3 (s), 127.7
(d), 129.6 (d), 129.7 (s), 131.8 (d), 133.9 (d), 134.0 (d),
139.6 (s), 160.6 (s), 171.0 (s), 187.0 (s). Anal. Calcd
for C18H16Cl2O4(367): C, 58.86; H, 4.36; Cl, 19.35%.
Found: C, 58.78; H, 4.32; Cl, 19.31%.

General Procedure for 3a–i

In benzene or in acetonitrile solvent (50 mL), the
starting material 2 (15 mmol) was dissolved and de-
oxygenated by bubbling nitrogen gas for 1 h and then
irradiated for 4–20 h. After the completion of the re-
action (monitored by TLC), the solvent was evap-
orated under reduced pressure at 40◦, the residue
chromatographed and eluted with hexane : chloro-
form : acetone mixture (7:3:1) to give 3.

3a: mp 156–157◦C; IR (Nujol): 3410 cm−1 (OH);
1H NMR (CDCl3): δ 2.4 (s, 3H, Ar-CH3), 2.5 (s, 3H, Ar-
CH3), 3.9 (s, 1H, C2-H), 4.3 (s, 1H, C2-H), 6.0–6.2 (bs,
1H, OH), 7.2–8.0 (bm, 7H, Ar-H); 13C NMR (CDCl3):
δ 20.9 (q), 21.2 (q), 80.5 (t), 88.3 (s), 114.6 (d), 127.3
(d), 128.3 (d), 128.6 (s), 129.7 (d), 129.8 (s), 135.2 (s),
140.0 (s), 155.7 (s). Anal. Calcd for C16H16O2(240): C,
80.0; H, 6.67%. Found: C, 79.60; H, 6.62%.

3b: mp 155–157◦C; IR (Nujol): 3420 cm−1(OH);
1H NMR (CDCl3); δ 2.4 (s, 3H, Ar-CH3), 3.8 (s, 1H,
C2-H), 4.4 (s, 1H, C2-H), 6.0–6.2 (bs, 1H, OH), 7.2–
8.0 (bm, 7H, Ar-H); 13C NMR (CDCl3): δ 21.2 (q), 80.5
(t), 88.3 (s), 114.6 (d), 120.6 (s), 127.3 (d), 128.3 (d),
128.6 (s), 129.7 (d), 129.8 (s), 155.7 (s). Anal. Calcd
for C15H13BrO2(305): C, 59.02; H, 4.26; Br, 26.23%.
Found: C, 59.0; H, 4.21; Br 26.18%.

3c: mp 158–159◦C; IR (Nujol): 3415 (OH) cm−1;
1H NMR (CDCl3): 2.4 (s, 3H, Ar-CH3), 3.9 (s, 1H, C2-
H), 4.4 (s, 1H, C2-H), 6.0–6.3 (bs, 1H, OH), 7.2–8.0
(bm, 6H, Ar-H); 13C NMR (CDCl3): δ 21.2 (q), 78.7 (s),
80.0 (t), 114.6 (d), 127.3 (d), 127.8 (d), 127.9 (d), 128.5
(d), 128.6 (s), 129.7 (d), 129.8 (s), 134.1 (s), 134.7 (s),
144.8 (s), 155.7 (s). Anal. Calcd for C15H12Cl2O2(295):
C, 61.02; H, 4.07; Cl, 24.07%. Found: C, 61.0; H, 4.08;
Cl, 23.04%.

Cis-3d: mp 158–159◦C; IR (Nujol): 3410
cm−1(OH); 1H NMR (CDCl3): δ 1.22 (d, J = 7 Hz,
3H, C2-CH3), 2.4 (s, 3H, Ar-CH3), 2.6 (s, 3H, Ar-CH3),
3.9–4.2 (q, J = 7 Hz ,1H, C2-H), 6.1–6.2 (bs, 1H,
OH), 7.3–8.1 (bm, 7H, Ar-H); 13C NMR (CDCl3): δ
13.8(q), 20.9 (q), 21.2 (q), 83.9 (d), 94.7 (s), 114.6
(d), 127.3 (d), 128.3 (d), 128.6 (s), 129.7 (d), 129.8
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(s), 135.2 (s), 140.0 (s), 155.7 (s). Anal. Calcd for
C17H18O2(254): C, 80.31; H, 7.09%. Found: C, 80.11;
H, 7.05%.

Trans-3d: mp 146–148◦C; IR (Nujol): 3400 cm−1

(OH); 1H NMR (CDCl3): δ 1.15–1.56 (d, J = 7 Hz, 3H,
C2-CH3), 2.2 (s, 3H, Ar-CH3), 2.4 (s, 3H, Ar-CH3), 4.3–
4.5 (q, J = 7 Hz, 1H, C2-H), 6.0–6.2 (bs, 1H, OH),
7.2–7.8 (bm, 7H, Ar-H);13C NMR (CDCl3): δ 13.8 (q),
20.9 (q), 21.2 (q), 82.9 (d), 93.7 (s), 114.6 (d), 127.3
(d), 128.3 (d), 128.6 (s), 129.7 (d), 129.8 (s), 135.2 (s),
140.0 (s), 155.7 (s). Anal. Calcd for C17H18O2(254): C,
80.31; H, 7.09%. Found: C, 80.10; H, 7.04%.

Cis-3e: mp 160–162◦C; IR (Nujol): 3410 cm−1

(OH); 1H NMR (CDCl3): δ 1.09–1.10 (d, J = 7 Hz, 3H,
C2-CH3), 2.4 (s, 3H, Ar-CH3), 3.7–4.0 (q, J = 7 Hz,
1H, C2-H), 6.1–6.2 (bs, 1H, OH), 7.3–8.1 (bm, 7H,
Ar-H); 13C NMR (CDCl3): δ 13.8 (q), 21.2 (q), 83.9
(d), 88.3 (s) 114.6 (d), 120.6 (s), 127.3(d), 128.6
(s), 129.7 (d), 129.8 (s), 130.6 (d), 132.3 (d), 142.0
(s), 155.7 (s). Anal. Calcd for C16H15BrO2(319): C,
60.19; H, 4.70; Br, 24.6%. Found: C, 60.15; H, 4.71;
Br, 24.4%.

Trans-3e: mp 118–119◦C; IR (Nujol): 3400 cm−1

(OH); 1H NMR (CDCl3): δ 1.15–1.6 (d, J = 7 Hz , 3H,
C2-CH3), 2.2 (s, 3H, Ar-CH3), 4.0–4.3 (q, J = 7 Hz ,
1H, C2-H), 6.0–6.2 (bs, 1H, OH), 7.2–7.8 (bm, 7H,
Ar-H); 13C NMR (CDCl3): δ 13.8 (q), 21.2 (q), 82.9 (d),
87.3 (s), 114.6 (d), 120.6 (s), 127.3(d), 128.6 (s), 129.7
(d), 129.8 (s), 130.6 (d), 132.3 (d), 142.0 (s), 155.7 (s).
Anal. Calcd for C16H15BrO2(319): C, 60.19, H, 4.70,
Br, 24.6%. Found: C, 60.15, H, 4.68, Br, 24.3%.

Cis-3f: mp 162–164◦C; IR (Nujol): 3410 cm−1

(OH); 1H NMR (CDCl3): δ 1.1–1.2 (d, J = 7 Hz , 3H,
C2-CH3), 2.4 (s, 3H, Ar-CH3), 3.8–4.0 (q, J = 7 Hz ,
1H, C2-H), 6.1–6.2 (bs, 1H, OH), 7.3–8.1 (bm, 6H,
Ar-H); 13C NMR (CDCl3): δ 13.8 (q), 21.2 (q), 83.9
(d), 94.7 (s), 114.6 (d), 127.3 (d), 127.8 (d), 128.5 (d),
128.6 (s), 129.7 (d), 129.8 (s), 129.9 (d), 134.1 (s),
144.8 (s), 155.7 (s). Anal. Calcd for C16H16Cl2O2(323):
C, 62.14; H, 4.53; Cl, 22.98%. Found: C, 62.11; H,
4.48; Cl, 22.95%.

Trans-3f: mp 112–113◦C; IR (Nujol): 3400 cm−1

(OH); 1H NMR (CDCl3): δ 1.15–1.17 (d, J = 7 Hz , 3H,
C2-CH3), 2.2 (s, 3H, Ar-CH3), 4.1–4.4 (q, J = 7 Hz ,
1H, C2-H), 6.0–6.2 (bs, 1H, OH), 7.2–7.8 (bm, 6H, Ar-
H);13C NMR (CDCl3): δ 13.8 (q), 21.2 (q), 82.9 (d), 93.7
(s), 114.6 (d), 127.3 (d), 127.8 (d), 128.5 (d), 128.6
(s), 129.7 (d), 129.8 (s), 129.9 (d), 134.1 (s), 144.8
(s), 155.7 (s). Anal. Calcd for C16H16Cl2O2(323): C,
62.14; H, 4.53; Cl, 22.98%. Found: C, 62.11; H, 4.51;
Cl, 22.95%.

Cis-3g: mp 120–122◦C; IR (Nujol): 3420–3480
(OH), 1745 cm−1 (ester C O);1H NMR (CDCl3): δ 1.1–
1.3 (t, J = 7 Hz, 3H, ester CH3), 2.1 (s, 3H, Ar-CH3),
2.3 (s, 3H, Ar-CH3), 3.6–3.8 (q, J = 7 Hz , 2H, ester

CH2), 3.9 (s, 1H, C2-H), 5.1–5.3 (bs, 1H, OH), 7.3–
7.8 (bm, 7H, Ar-H);13C NMR (CDCl3): δ 13.6 (q), 20.9
(q), 21.2 (q), 59.8 (t), 87.6 (s), 93.6 (d), 114.6 (d),
127.3 (d), 128.3 (d), 128.6 (s), 129.7 (d), 129.8 (s),
135.2 (s), 140.0 (s), 155.7 (s), 172 (s). Anal. Calcd for
C19H20O4(312): C, 73.08; H, 6.41%. Found: C, 73.05;
H, 6.38%.

Trans-3g: mp 90–95◦C; IR (Nujol): 3420–3480
(OH), 1745 cm−1 (ester C O); 1H NMR (CDCl3): δ
1.2–1.4 (t, J = 7 Hz, 3H, ester CH3), 2.4 (s, 3H, Ar-
CH3), 2.6 (s, 3H, Ar-CH3), 4.0–4.2 (q, J = 7 Hz, 2H,
ester CH2), 4.3 (s, 1H, C2-H), 5.2–5.4 (bs, 1H, OH),
7.3-7.8 (bm, 7H, Ar-H); 13C NMR (CDCl3): δ 13.6 (q),
20.9 (q), 21.2 (q), 59.8 (t), 86.6 (s), 92.6 (d), 114.6 (d),
127.3 (d), 128.3 (d), 128.6 (s), 129.7 (d), 129.8 (s),
135.2 (s), 140.0 (s), 155.7 (s), 172 (s). Anal. Calcd for
C19H20O4(312): C, 73.08; H, 6.41%. Found: C, 73.06;
H, 6.37%.

Cis-3h: mp 130–132◦C; IR (Nujol): 3340–3380
(OH), 1763 cm−1 (ester C O); 1H NMR (CDCl3): δ
1.2–1.4 (t, J = 7 Hz, 3H, ester CH3), 2.3 (s, 3H, Ar-
CH3), 3.4–3.7 (q, J = 7 Hz, 2H, ester CH2), 4.0 (s, 1H,
C2-H), 5.2–5.4 (bs, 1H, OH), 6.5–7.8 (bm, 7H, Ar-H);
13C NMR (CDCl3): δ 13.6 (q), 21.2 (q), 59.8 (t), 87.6
(s), 93.6 (d), 114.6 (d), 120.6 (s), 127.3 (d), 128.6
(s), 129.7 (d), 130.6 (d), 132.3 (d), 142.0 (s), 155.7
(s), 172.0 (s). Anal. Calcd for C18H17BrO4(377): C,
57.24; H, 4.51; Br, 21.22%. Found: C, 57.23; H, 4.50;
Br, 21.20%.

Trans-3h: mp 85–88◦C; IR (Nujol): 3460–3500
(OH), 1763 cm−1(ester C O); 1H NMR (CDCl3): δ 1.2–
1.4 (t, J = 7 Hz, 3H, ester CH3), 2.3 (s, 3H, Ar-CH3),
4.2–4.4 (q, J = 7 Hz, 2H, ester CH2), 4.45 (s, 1H, C2-
H), 5.2–5.3 (bs, 1H, OH), 7.1–7.8 (bm, 7H, Ar-H); 13C
NMR (CDCl3): δ 13.6 (q), 21.2 (q), 59.8 (t), 86.6 (s),
92.6 (d), 114.6 (d), 120.6 (s), 127.3 (d), 128.6 (s), 129.7
(d), 130.6 (d), 132.3 (d), 142.0 (s), 155.7 (s), 172.0 (s).
Anal. Calcd for C18H17O4Br (377): C, 57.29; H, 4.51;
Br, 21.22%. Found: C, 57.25; H, 4.49; Br, 21.21%.

Cis-3i: mp 128–130◦C; IR (Nujol): 3460–3500
(OH), 1762 cm−1(ester C O);1H NMR (CDCl3): δ 1.2–
1.4 (t, J = 7 Hz, 3H, ester CH3), 2.2 (s, 3H, Ar-CH3),
3.7–4.0 (q, J = 7 Hz, 2H, ester CH2), 4.1 (s, 1H,
C2-H), 5.0–5.2 (bs, 1H, OH), 7.0–7.7 (bm, 6H, Ar-
H); 13C NMR (CDCl3): δ 13.6 (q), 21.2 (q), 78.0 (s),
93.1 (d), 114.6 (d), 127.3 (d), 127.6 (d), 127.9 (d),
128.5 (d), 128.6 (s), 129.7 (d), 129.8 (s), 134.1 (s),
134.7 (s), 144.8 (s), 155.7 (s), 172.0 (s). Anal. Calcd
for C18H16Cl2O4(367): C, 58.86, H, 4.36, Cl, 19.35%.
Found: C, 58.85; H, 4.4; Cl, 19.32%.

Trans-3i: mp 80–82◦C; IR (Nujol): 3460–3500
(OH), 1762 cm−1(ester C O);1H NMR (CDCl3): δ 1.3–
1.5 (t, J = 7 Hz, 3H, ester CH3), 2.2 (s, 3H, Ar-CH3),
4.15–4.4 (q, J = 7 Hz, 2H, ester CH2), 4.5 (s, 1H, C2-
H), 4.6–4.9 (bs, 1H, OH), 6.65–7.7 (bm, 6H, Ar-H);
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13C NMR (CDCl3): δ 13.6 (q), 21.2 (q), 77.0 (s),
92.1 (d), 114.6 (d), 127.3 (d), 127.6 (d), 127.9 (d),
128.5 (d), 128.6 (s), 129.7 (d), 129.8 (s), 134.1 (s),
134.7 (s), 144.8 (s), 155.7 (s), 172.0 (s). Anal. Calcd
for C18H16Cl2O4(367): C, 58.86; H, 4.36; Cl, 19.35%.
Found: C, 58.83; H, 4.33; Cl, 19.31%.

CONCLUSION

In conclusion, we have synthesized a new series of
dihydrobenzofuranols using photocyclization reac-
tion in two solvents of different polarity and stud-
ied the electronic effect of the substituents at ortho,
meta, para positions on intramolecular cyclization
of 1,5-biradicals. From the above results, photocy-
clization of 2-alkoxy substituted benzophenones and
their derivatives was a useful method for prepara-
tion of substituted dihydrobenzofuranols. Effect of
substituents on rate of cyclization was confirmed by
irradiation period (Table 1).
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